Abstract—The abstract goes here.

I. INTRODUCTION

II. RELATED WORK
- DTN background
- mechanical backhaul, message ferry
- TCP issues, previous approaches, compare with Wireless TCPs

III. BACKGROUND AND PROBLEM DESCRIPTION
Limitations and advantages of message ferry DTNs.

A. Application Scenarios
- Classification based on RTL, throughput and reliability
- What applications DTN can support and what not?

B. Transport Protocol Requirements
Detailed discussion of following TCPs and why would they fail in DTNs
- Freeze TCP,
- Snoop Protocol,
- MTCP,
- M-TCP,
- I-TCP,
- TCP Spoofing

C. Problem and approach
What is the problem using standard TCP with DTN? How TCP should be modified for DTNs?

IV. MESSAGE FERRY TCP
A. System Design
- What changes are made to standard TCP?
- Window size estimation for node and ferry

B. TCP State Transitions
State transition diagram for ferry and node

C. TCP Operations
Session initiation, termination and data transfer between client, ferry and server

V. NUMERICAL RESULTS
- comparison with standard TCP and message ferry TCP
- discuss the cases of data segment loss in message ferry TCP

VI. CONCLUSION AND FUTURE WORK

ACKNOWLEDGMENT
The authors would like to thank...

REFERENCES